Presentation to the TIP Workshop on Benchmarking Science and Technology Policy

Results from the First Cycle of Benchmarking RTD Policies

Vienna, November 25, 2002

Seán O'Reagain
Directorate General for Research,
European Commission

Structure of Presentation

Outcome of First Cycle

Lessons Learnt from Process

Current and Future Steps

Implementation of RTD Benchmarking

First cycle: July 2000 - June 2002

Focussed on five themes:

- public and private investment in RTD;
- human resources in RTD;
- scientific and technological productivity;
- impact of RTD on economic competitiveness and employment;
- promotion of RTD culture and public understanding of science.

Public and Private Investment in RTD

Key Findings

- Globalisation is changing the organisation of R&D investment
- Trends in public funding of R&D are evolving significantly
- A high quality education system producing an adaptable labour force is crucial
- The legal framework for Intellectual Property Rights is increasingly important
- Simply increasing R&D investment does not necessarily increase its efficiency

Public and Private Investment in RTD

Recommendations

- Strengthen co-ordination with other policy areas
- Heighten public policy focus on human resources
- Increase involvement of all stakeholders in priority-setting and policy development
- Devolve greater responsibility for public R&D to local and regional governments
- Strengthen public technology appraisal capacity
- Increase emphasis on evaluation

Human Resources in RTD

Key Findings

- The proportion of researchers in the EU is falling increasingly behind the US and Japan
- Scientific careers no longer command sufficient interest
- Able research talent is being lost to other countries and to non-scientific activities
- Key recruitment barriers include gender imbalances and unattractive working conditions
- Life-long learning is being under-utilised for career development in research

Human Resources in RTD

Recommendations

- Address Limitations in the Education System
 - increase the recruitment base in scientific subjects from the secondary school system
 - increase availability of scientific teachers
- Increase the Attractiveness of Research as a Career
 - enhance resources and working conditions in research
 - give special attention to first destinations of graduate researchers
 - utilise experienced researchers efficiently throughout the whole career period

Scientific and Technological Productivity

Methodological Considerations

- Application of the concept of productivity to science and technology is not straightforward
- Level of aggregation of indicators does not facilitate identification of good practices
 - e.g. publications and citations are only intermediate outputs of research (only partial proxy for knowledge advancement and social and economic progress)

Scientific and Technological Productivity

Key Findings

- No clear evidence that EU is lagging vis-à-vis US and Japan
 - compares favourably on publications and citations
 - in "triad patents", some EU Member States ahead
- Wide variations exist within EU

Scientific and Technological Productivity

Conclusions

- Need for more advanced indicators
- Careful and systematic international comparisons can be a driver to improve performance
 - e.g. Nordic countries
- Long-term approach required to build capacity

Impact of RTD on Competitiveness and Employment

Methodological Considerations

- Complexity of innovation systems limits understanding of causal links between R&D inputs and competitiveness and employment outputs
- Isolating role of policy initiatives challenging
- Limited scope for formulating generic policy lessons and prescriptions

Impact of RTD on Competitiveness and Employment Key Concepts

Social and Human Capital

- innovation performance is in part a function of general educational standards, levels and attainments
- Research Capacity
 - long-term strength of a country's research system is a function of researcher calibre and research quality
- Technological Innovation Performance
 - BERD/GDP, patents per capita and innovation expenditure /sales reflect technological innovation performance
- Absorptive Capacity
 - ability to exploit technology is an important reflection of overall innovation performance

Impact of RTD on Competitiveness and Employment

Conclusions

- Close correlations between country performances on social and human capital, research capacity and technological innovation performance so policies must tackle all simultaneously
- Weak correlation between absorptive capacity and other three concepts so need for concerted focus on absorptive capacity
- Need for benchmarking approach which concentrates on systemic interactions

Promotion of RTD Culture and Public Understanding of Science

Focus of Exercise

Qualitative approach: proxy indicators

- Two groups of actors:
 - short-term responsive: governments, scientific community and industry
 - long-term proactive: science museums, media and education system

Promotion of RTD Culture and Public Understanding of Science

Recommendations

Government: Establish dedicated teams to provide leadership in promoting public understanding of science and associated programmes

Scientific Community: Career progression should take account of scientists' contributions to public understanding

Education Authorities: Provide teachers with resources to facilitate development of schools networks

Promotion of RTD Culture and Public Understanding of Science

Recommendations

Science Museums: Give priority to co-operative projects between institutions

Media: promote the presence of science issues in public television

Industry: Support the development of educational projects

Benchmarking RTD Policies

Key Lessons from Process

- Benchmarking of R&D policies is feasible and desirable
- Need to identify more focused topics with high policy relevance
- Definition phase vital in developing a benchmarking exercise
- Active involvement of Member and Associated
 States in design and implementation essential

Benchmarking RTD Policies

Current and Future Steps

- Dissemination and Evaluation Underway
- Consideration of Process and Topics for Second Cycle
- Wide Consultation Taking Place
 - High Level Group on Benchmarking
 - Workshops with Member States' Experts
 - Conference Organised with Greek Presidency